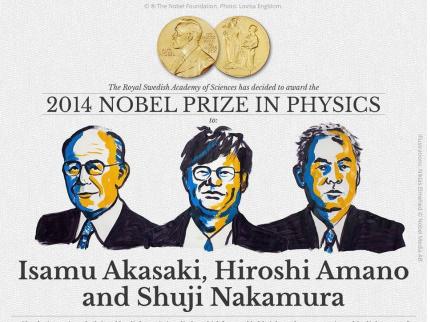

# LED Lighting Revolutions-Technology, Design, and Application

California Energy Alliance UC Davis February 5, 2020 Morgan Pattison, Ph.D., LC SSLS, Inc.



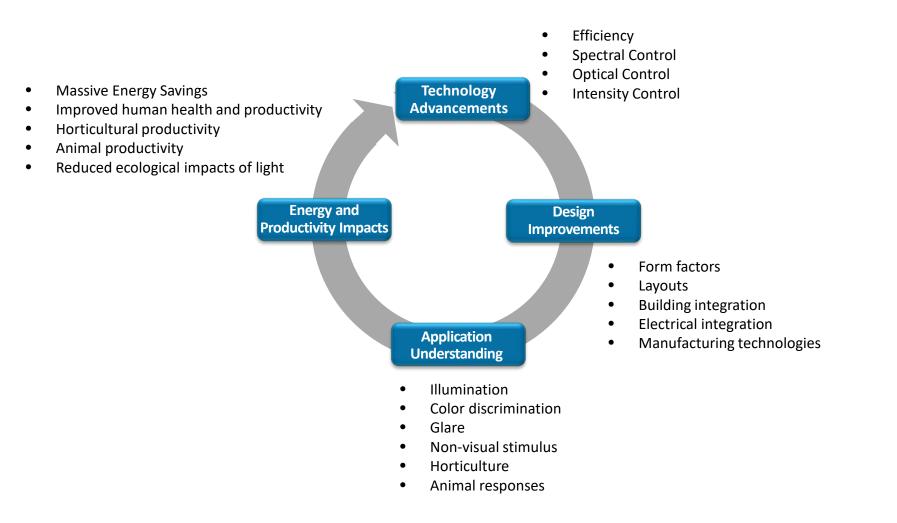

# **LED Technology Revolution**





# **LED Technology Revolution**

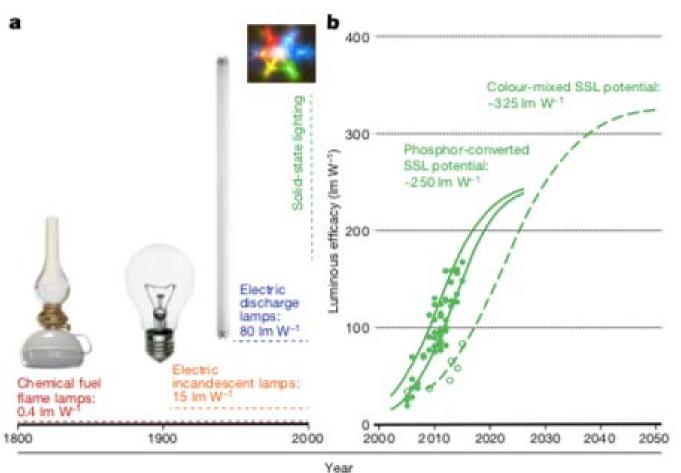



"for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources"

Solution Content of the Nobel Prize



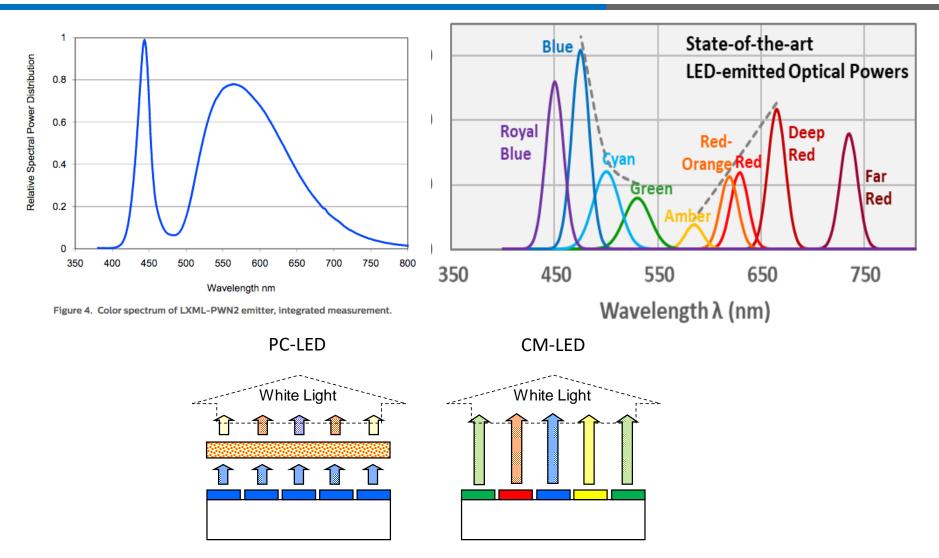



# **Inter-acting Revolutions**





# **High Efficiency/Efficacy**






Pattison, P. M., et al. "LEDs for photons, physiology and food." Nature 563.7732 (2018): 493-500.



# **Spectral control**



Blue LEDs + Phosphor

Direct Emission LEDs

SSLS, INC

2018 Solid-State Lighting R&D Plan

# **Optical control and intensity control**



Intensity control – Time of night dimming of roadway lights in Cambridge, Tucson, San Jose



# **LED- Intensity control**

CASE STUDY

### CAMBRIDGE, MA: SETTING THE EXAMPLE FOR ADAPTIVE STREET LIGHTING

#### **Project Highlights**

Energy savings 80%

Energy cost savings **\$500,000 per year** 

Rebates \$820,000+

Payback period 4.36 years

Neighborhood-specific adaptive controls Dimming to 30% at 8 p.m. or 10 p.m.



When a city is home to two of the most renowned universities of academics and innovation in America, Harvard and MIT, it too had better embrace innovation and smart thinking. Cambridge's commitment to sustainability as a key initiative goal demonstrates its mission to provide advanced energy efficiency and climate protection for its citizens. Cambridge successfully implemented what few cities have attempted: Time of night dimming-Cambridge, MA Tucson, AZ San Jose, CA



# **Design Improvements**



# **Form Factors**





## **Form Factors**





# **Philips Dubai Lamp**

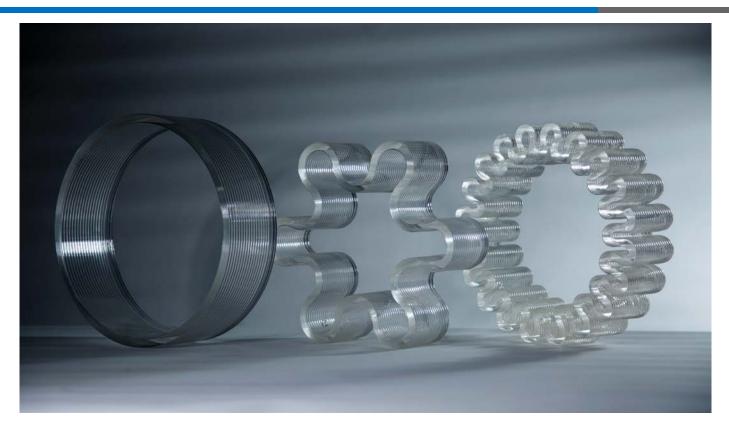


### Bulb 2 Watt

,

With a light output of 400 lumen,
this lamp can replace a 40W
incandescent bulb, for example
in decorative fixtures or areas
where not much light is needed.
Its filament LED technology gives
the same decorative impression
as the original incandescent
lamps. The lamp is available in
warm white and cool daylight.
The lifetime is 25,000 hours. The
lamp has an E27 base and is not
dimmable. This product contains
no mercury.




# **New Materials**



The Bamboo Pendant designed by Brad Koerner of Koerner Designs has won the US Department of Energy's Manufacturing Innovator Challenge for Sustainable Manufacturing of Luminaires. (Image credit: Illustration courtesy of Lucept.com, Koerner Design.)



# **Additive Manufacturing**



Inamura Presentation, 2020 DOE Lighting R&D Workshop

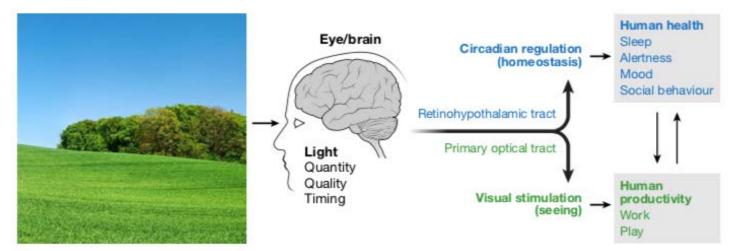


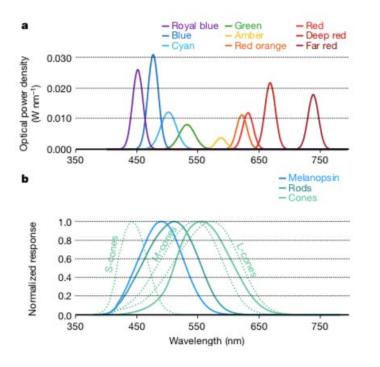
# Lm/W?

Efficiency Programs always focused on the denominator



# **Light and Health**





Fig. 3 | The two photoreceptor pathways between the human eye and the brain. The primary optical tract (green text) originates in the retinal rods and cones. Cone photoreceptors in the fovea provide higher-light-level photopic colour vision with a peak sensitivity in the green at a wavelength of approximately 555 nm, the colour of green foliage; rod photoreceptors provide the lower-light-level scotopic black, grey and white vision with a

peak sensitivity at about 498 nm. The retinohypothalamic tract (blue text) originates with ipRGCs, the peak sensitivity of which is at about 480 nm, approximately the colour of the blue sky. This regulates the circadian, neuroendocrine and neurobehavioural systems that ultimately impact human health and productivity. Photograph from iStock/Getty.

Pattison, P. M., et al. "LEDs for photons, physiology and food." Nature 563.7732 (2018): 493-500.



# **Colors and Health**



**High Melanopic Stimulation** Low Melanopic Stimulation 12000 K 1500 K Ra=80 Ra=90 500 560 620 680 740 620 200 400 508 540 590 660 740 meteriarge (her) Weleniance (nm) (b) (a)

Figure 2.8 (a) Daytime Activation by Light and (b) Less Circadian Light Effects in the Evening and Night Source: Andreas Wojtysiak, OSRAM, SSL R&D Workshop, San Francisco, CA, January 2015 [22]

Pattison, P. M., et al. "LEDs for photons, physiology and food." *Nature* 563.7732 (2018): 493-500.



# **Mediating Factors for physiological responses**

Elements involved in light transduction

- Conscious and Reflex Behavior
- Ocular Media Transmission
- Iris/Pupil Dilation
- Photoreceptor Sensitivity
- Photoreceptor Distribution
- Neural Integration of Time/Space
- State of Retinal Adaptation



George Brainard, TJU

"A maxim for optimizing circadian regulation is increased light exposure at the beginning of and during the wake cycle, and decreased light exposure before sleep."

Pattison, P. M., et al. "LEDs for photons, physiology and food." Nature 563.7732 (2018): 493-500.



# **Roadway Safety**





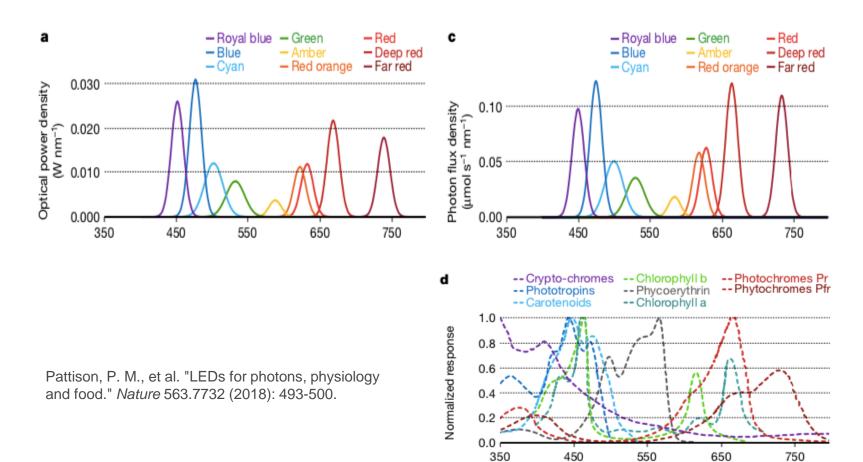
# **Horticultural Lighting**




Aerofarms, Newark, NJ



# **Horticultural Lighting – Redefining efficacy**


|                          | General Illumination                                             | Horticultural Lighting                                                       |  |  |
|--------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Output                   | Lumens (Im)                                                      | Photosynthetic Photon Flux<br>(µ-moles/second)                               |  |  |
| Efficacy                 | Lumens/Watt (Im/W)                                               | Photosynthetic Photon Efficacy<br>(µ-moles/joule)                            |  |  |
| Illuminance              | Footcandles (Im/ft <sup>2</sup> ) or<br>Lux (Im/m <sup>2</sup> ) | Photosynthetic Photon Flux Density<br>(µ-moles/second-m <sup>2</sup> )       |  |  |
| Efficacy of<br>Radiation | Luminous Efficacy of Radiation (LER)<br>(Im/Optical Watt)        | Photosynthetic Photon Efficacy of Radiation<br>(µ-moles/second Optical Watt) |  |  |





for a Typical Pc-LED Architecture with a Neutral White Color Temperature and for a Hypothetical Cm-LED Architecture Containing Only Blue (455 nm) and Deep Red (665 nm) LEDs With an Optical Power Ratio of 1:4

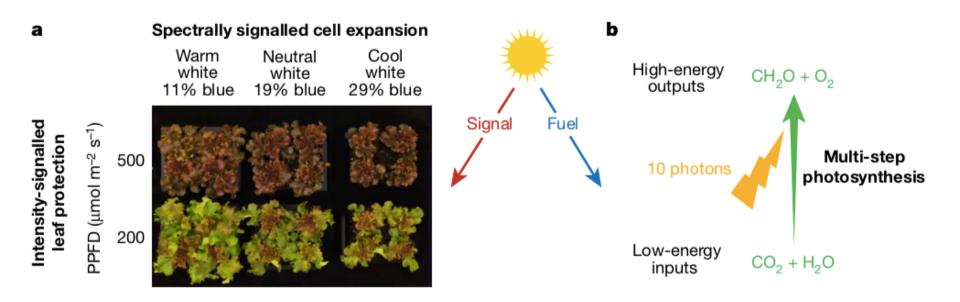
# **Horticultural Lighting – Plant Responses**



Wavelength (nm)

SSLS, INC

# **LED specifics**


| LED        | Efficiency<br>W per W | Efficacy<br>µmol per J | relative<br>Price |
|------------|-----------------------|------------------------|-------------------|
| Blue       | 0.88                  | 3.3                    | 30×               |
| Red        | 0.69                  | 3.8                    | 10×               |
| Far-red    | 0.66                  | 4.0                    | 30×               |
| Cool White | 0.80                  | 3.0                    | 1×                |
|            |                       |                        |                   |

Kusuma, Pattison and Bugbee. From physics to fixtures to food: Potential efficacy of LEDs. In review.

> Bruce Bugbee Utah State University



# **Horticultural Lighting – Plant Responses**



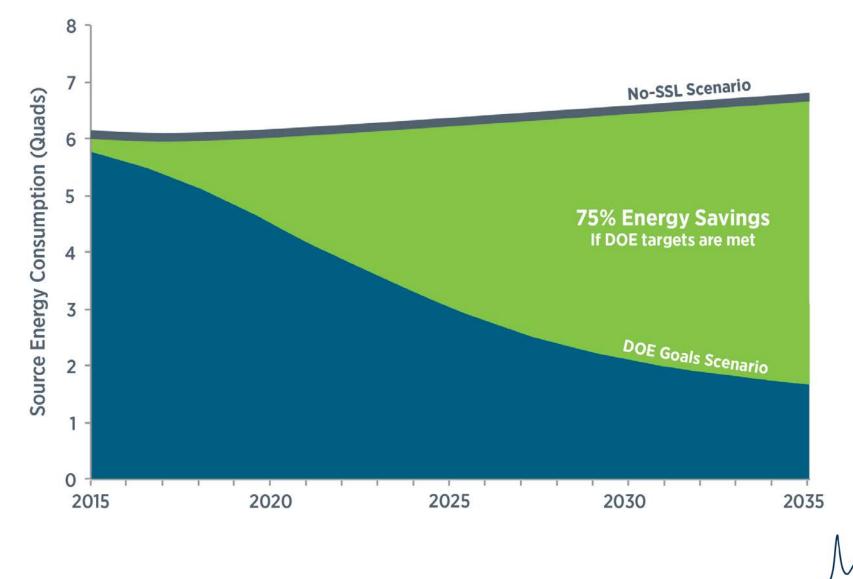
Pattison, P. M., et al. "LEDs for photons, physiology and food." *Nature* 563.7732 (2018): 493-500.



# **Animal Responses to light**





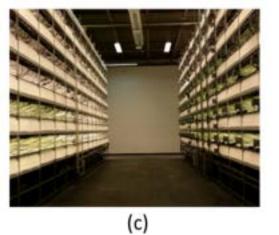






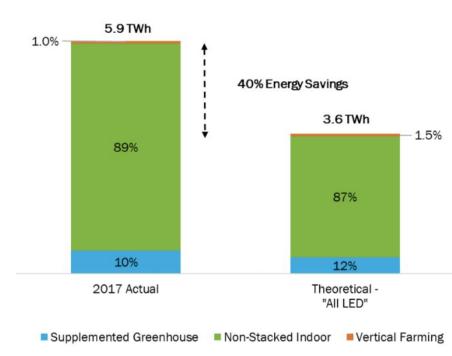



# **Lighting Energy Projection – U.S.A.**




SSLS, INC

# **Horticulture Lighting – Energy Savings**








(b)





### (24 tBtu/yr)

Energy Savings Potential of SSL in Horticultural Applications, DOE SSL Program 2017



27

# **Horticulture Lighting – Energy Savings**

#### Table E.1 Summary of Horticultural Lighting Analysis

| Analysis Outputs                          | Units<br>Million ft <sup>2</sup><br>Hours/year | Vertical<br>Farming<br>0.5<br>6278 | Supplemented<br>Greenhouse<br>26.8<br>2120 | Non-Stacked<br>Indoor<br>18.7<br>5475 | Total <sup>1</sup><br>46.0 |
|-------------------------------------------|------------------------------------------------|------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|
| Estimated Total Lit Grow Area             |                                                |                                    |                                            |                                       |                            |
| Annual Operating Hours                    |                                                |                                    |                                            |                                       |                            |
| Average Electricity Consumption           |                                                |                                    | )(                                         |                                       |                            |
| LED                                       |                                                | 17.4                               | 7.3                                        | 41.8                                  |                            |
| HPS/MH                                    | W/ft <sup>2</sup>                              | N/A                                | 10.4                                       | 60.8                                  |                            |
| Fluorescent                               |                                                | 22.8                               | N/A                                        | 60.0                                  |                            |
| 2017 Technology Mix                       |                                                |                                    |                                            |                                       |                            |
| LED                                       |                                                | 66%                                | 2%                                         | 4%                                    | -                          |
| HPS/MH                                    | %                                              | <1%                                | 98%                                        | 89%                                   |                            |
| Fluorescent                               |                                                | 34%                                | 2                                          | 7%                                    | -                          |
| 2017 Annual Energy Consumption            |                                                |                                    | · · · · · · · · · · · · · · · · · · ·      |                                       |                            |
| 0                                         |                                                | 60                                 | 588                                        | 5300                                  | 5940                       |
| Current                                   | GWh/year<br>(tBtu/year)                        | (0.62)                             | (6.1)                                      | (55)                                  | 61                         |
| The second second second                  |                                                | 55                                 | 416                                        | 3100                                  | 3570                       |
| Theoretical "All LED"                     |                                                | (0.57)                             | (4.3)                                      | (32)                                  | 37                         |
| Theoretical % Energy Savings <sup>3</sup> | %                                              | 10%                                | 29%                                        | 41%                                   | 40%                        |

1. Values may not add due to rounding.

2. Supplemented greenhouses may sometimes use a small number of fluorescent fixtures in a separate room or facility for the purpose of cultivating seedlings and grafted plants. However, these lights were not included as part of the study.

3. The theoretical percent energy savings given current technologies were all converted to LEDs, which is the percent difference in energy consumption of the Current and the Theoretical "All LED" scenarios. (Note percent energy savings are calculated from raw data, as opposed to rounded values presented in the table and, therefore, may not match.)



# **Key Takeaways**

- Lighting revolution enabled by efficiency
- New technology and application needs new design thinking
- Need updated lighting science understanding and guidance
- Energy, health, productivity, and environmental impacts will be immense

# Thank You!

Morgan Pattison morgan@sslsinc.com 1-805-217-3878



# Morgan Pattison, background

- PhD, Materials Science, UCSB
- 14 years with DOE Lighting R&D Program Senior Technical Advisor
  - Scout new technologies/materials
  - Understand barriers to adoption
  - Develop R&D strategies for new application understanding
  - Lead author of DOE R&D plans
  - Coordinate lighting efforts with other government agencies (USDA, NIH, NIOSH, DOD, DOT
- Consultant to National Park Service
- Consult to VC/investors
- Advisor-
  - GLASE, Resource Innovation Institute, Cyclotron Road, Phosphor Global Summit, Member IES Horticultural Lighting Committee



## **Recent Publications**

- 2019 U.S. DOE Lighting R&D Opportunities (lead author)
- 2018 Pattison Nature
- Comptes Rendue
- Annalen der Physik
- Acta Horticultural
- Upcoming
  - 2019 Energy Savings Potential of SSL in Agricultural Applications
  - From physics to fixtures to food: Current and Potential LED efficacy
  - A review of human physiological responses to light: Significance to the development of innovative lighting applications

